
1

All Packages Class Hierarchy Index

package java.awt.image

ImageConsumer

ImageObserver

ImageProducer

ColorModel

CropImageFilter

DirectColorModel

FilteredImageSource

ImageFilter

IndexColorModel

MemoryImageSource

PixelGrabber

RGBImageFilter

2

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.ColorModel

java.lang.Object
 |
 +−−−−java.awt.image.ColorModel

public class ColorModel

extends Object

A class that encapsulates the methods for translating from pixel values to alpha, red,

green, and blue color components for an image. This class is abstract.

See Also:

IndexColorModel, DirectColorModel

 pixel_bits

 ColorModel(int)

Constructs a ColorModel which describes a pixel of the specified number of bits.

 getAlpha(int)

The subclass must provide a function which provides the alpha color compoment

for the specified pixel.

 getBlue(int)

The subclass must provide a function which provides the blue color compoment for

the specified pixel.

 getGreen(int)

The subclass must provide a function which provides the green color compoment

for the specified pixel.

3

 getPixelSize()

Returns the number of bits per pixel described by this ColorModel.

 getRGB(int)

Returns the color of the pixel in the default RGB color model.

 getRGBdefault()

Return a ColorModel which describes the default format for integer RGB values

used throughout the AWT image interfaces.

 getRed(int)

The subclass must provide a function which provides the red color compoment for

the specified pixel.

 pixel_bits

 protected int pixel_bits

 ColorModel

 public ColorModel(int bits)

Constructs a ColorModel which describes a pixel of the specified number of bits.

 getRGBdefault

 public static ColorModel getRGBdefault()

Return a ColorModel which describes the default format for integer RGB values

used throughout the AWT image interfaces. The format for the RGB values is an

integer with 8 bits each of alpha, red, green, and blue color components ordered

correspondingly from the most significant byte to the least significant byte, as in:

0xAARRGGBB

 getPixelSize

 public int getPixelSize()

Returns the number of bits per pixel described by this ColorModel.

4

 getRed

 public abstract int getRed(int pixel)

The subclass must provide a function which provides the red color compoment for

the specified pixel.

Returns:

The red color component ranging from 0 to 255

 getGreen

 public abstract int getGreen(int pixel)

The subclass must provide a function which provides the green color compoment

for the specified pixel.

Returns:

The green color component ranging from 0 to 255

 getBlue

 public abstract int getBlue(int pixel)

The subclass must provide a function which provides the blue color compoment for

the specified pixel.

Returns:

The blue color component ranging from 0 to 255

 getAlpha

 public abstract int getAlpha(int pixel)

The subclass must provide a function which provides the alpha color compoment

for the specified pixel.

Returns:

The alpha transparency value ranging from 0 to 255

 getRGB

 public int getRGB(int pixel)

Returns the color of the pixel in the default RGB color model.

See Also:

getRGBdefault

All Packages Class Hierarchy This Package Previous Next Index

5

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.CropImageFilter

java.lang.Object
 |
 +−−−−java.awt.image.ImageFilter
 |
 +−−−−java.awt.image.CropImageFilter

public class CropImageFilter

extends ImageFilter

An ImageFilter class for cropping images. This class extends the basic ImageFilter Class

to extract a given rectangular region of an existing Image and provide a source for a new

image containing just the extracted region. It is meant to be used in conjunction with a

FilteredImageSource object to produce cropped versions of existing images.

See Also:

FilteredImageSource, ImageFilter

 CropImageFilter(int, int, int, int)

Constructs a CropImageFilter that extracts the absolute rectangular region of

pixels from its source Image as specified by the x, y, w, and h parameters.

 setDimensions(int, int)

Override the source image’s dimensions and pass the dimensions of the

rectangular cropped region to the ImageConsumer.

 setPixels(int, int, int, int, ColorModel, byte[], int, int)

Determine whether the delivered byte pixels intersect the region to be extracted

and passes through only that subset of pixels that appear in the output region.

 setPixels(int, int, int, int, ColorModel, int[], int, int)

Determine if the delivered int pixels intersect the region to be extracted and pass

through only that subset of pixels that appear in the output region.

 setProperties(Hashtable)

6

Passes along the properties from the source object after adding a property

indicating the cropped region.

 CropImageFilter

 public CropImageFilter(int x,
 int y,
 int w,
 int h)

Constructs a CropImageFilter that extracts the absolute rectangular region of

pixels from its source Image as specified by the x, y, w, and h parameters.

Parameters:

x − the x location of the top of the rectangle to be extracted

y − the y location of the top of the rectangle to be extracted

w − the width of the rectangle to be extracted

h − the height of the rectangle to be extracted

 setProperties

 public void setProperties(Hashtable props)

Passes along the properties from the source object after adding a property

indicating the cropped region.

Overrides:

setProperties in class ImageFilter

 setDimensions

 public void setDimensions(int w,
 int h)

Override the source image’s dimensions and pass the dimensions of the

rectangular cropped region to the ImageConsumer.

Overrides:

setDimensions in class ImageFilter

See Also:

ImageConsumer

 setPixels

 public void setPixels(int x,

7

 int y,
 int w,
 int h,
 ColorModel model,
 byte pixels[],
 int off,
 int scansize)

Determine whether the delivered byte pixels intersect the region to be extracted

and passes through only that subset of pixels that appear in the output region.

Overrides:

setPixels in class ImageFilter

 setPixels

 public void setPixels(int x,
 int y,
 int w,
 int h,
 ColorModel model,
 int pixels[],
 int off,
 int scansize)

Determine if the delivered int pixels intersect the region to be extracted and pass

through only that subset of pixels that appear in the output region.

Overrides:

setPixels in class ImageFilter

All Packages Class Hierarchy This Package Previous Next Index

8

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.DirectColorModel

java.lang.Object
 |
 +−−−−java.awt.image.ColorModel
 |
 +−−−−java.awt.image.DirectColorModel

public class DirectColorModel

extends ColorModel

A ColorModel class that specifies a translation from pixel values to alpha, red, green,

and blue color components for pixels which have the color components embedded directly

in the bits of the pixel itself. This color model is similar to an X11 TrueColor visual.

Many of the methods in this class are final. This is because the underlying native

graphics code makes assumptions about the layout and operation of this class and those

assumptions are reflected in the implementations of the methods here that are marked

final. You can subclass this class for other reaons, but you cannot override or modify the

behaviour of those methods.

See Also:

ColorModel

 DirectColorModel(int, int, int, int)

Constructs a DirectColorModel from the given masks specifying which bits in the

pixel contain the red, green and blue color components.

 DirectColorModel(int, int, int, int, int)

Constructs a DirectColorModel from the given masks specifying which bits in the

pixel contain the alhpa, red, green and blue color components.

 getAlpha(int)

Return the alpha transparency value for the specified pixel in the range 0−255.

9

 getAlphaMask()

Returns the mask indicating which bits in a pixel contain the alpha transparency

component.

 getBlue(int)

Returns the blue color compoment for the specified pixel in the range 0−255.

 getBlueMask()

Returns the mask indicating which bits in a pixel contain the blue color

component.

 getGreen(int)

Returns the green color compoment for the specified pixel in the range 0−255.

 getGreenMask()

Returns the mask indicating which bits in a pixel contain the green color

component.

 getRGB(int)

Returns the color of the pixel in the default RGB color model.

 getRed(int)

Returns the red color compoment for the specified pixel in the range 0−255.

 getRedMask()

Returns the mask indicating which bits in a pixel contain the red color component.

 DirectColorModel

 public DirectColorModel(int bits,
 int rmask,
 int gmask,
 int bmask)

Constructs a DirectColorModel from the given masks specifying which bits in the

pixel contain the red, green and blue color components. Pixels described by this

color model will all have alpha components of 255 (fully opaque). All of the bits in

each mask must be contiguous and fit in the specified number of least significant

bits of the integer.

 DirectColorModel

 public DirectColorModel(int bits,
 int rmask,
 int gmask,
 int bmask,
 int amask)

Constructs a DirectColorModel from the given masks specifying which bits in the

pixel contain the alhpa, red, green and blue color components. All of the bits in

each mask must be contiguous and fit in the specified number of least significant

bits of the integer.

10

 getRedMask

 public final int getRedMask()

Returns the mask indicating which bits in a pixel contain the red color component.

 getGreenMask

 public final int getGreenMask()

Returns the mask indicating which bits in a pixel contain the green color

component.

 getBlueMask

 public final int getBlueMask()

Returns the mask indicating which bits in a pixel contain the blue color

component.

 getAlphaMask

 public final int getAlphaMask()

Returns the mask indicating which bits in a pixel contain the alpha transparency

component.

 getRed

 public final int getRed(int pixel)

Returns the red color compoment for the specified pixel in the range 0−255.

Overrides:

getRed in class ColorModel

 getGreen

 public final int getGreen(int pixel)

Returns the green color compoment for the specified pixel in the range 0−255.

Overrides:

getGreen in class ColorModel

 getBlue

11

 public final int getBlue(int pixel)

Returns the blue color compoment for the specified pixel in the range 0−255.

Overrides:

getBlue in class ColorModel

 getAlpha

 public final int getAlpha(int pixel)

Return the alpha transparency value for the specified pixel in the range 0−255.

Overrides:

getAlpha in class ColorModel

 getRGB

 public final int getRGB(int pixel)

Returns the color of the pixel in the default RGB color model.

Overrides:

getRGB in class ColorModel

See Also:

getRGBdefault

All Packages Class Hierarchy This Package Previous Next Index

12

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.FilteredImageSource

java.lang.Object
 |
 +−−−−java.awt.image.FilteredImageSource

public class FilteredImageSource

extends Object

implements ImageProducer

This class is an implementation of the ImageProducer interface which takes an existing

image and a filter object and uses them to produce image data for a new filtered version

of the original image. Here is an example which filters an image by swapping the red

and blue compents:

 Image src = getImage("doc:///demo/images/duke/T1.gif");
 ImageFilter colorfilter = new RedBlueSwapFilter();
 Image img = createImage(new FilteredImageSource(src.getSource(),
 colorfilter));

See Also:

ImageProducer

 FilteredImageSource(ImageProducer, ImageFilter)

Constructs an ImageProducer object from an existing ImageProducer and a filter

object.

 addConsumer(ImageConsumer)

Adds an ImageConsumer to the list of consumers interested in data for this image.

 isConsumer(ImageConsumer)

Determines whether an ImageConsumer is on the list of consumers currently

interested in data for this image.

 removeConsumer(ImageConsumer)

Removes an ImageConsumer from the list of consumers interested in data for this

13

image.

 requestTopDownLeftRightResend(ImageConsumer)

Requests that a given ImageConsumer have the image data delivered one more

time in top−down, left−right order.

 startProduction(ImageConsumer)

Adds an ImageConsumer to the list of consumers interested in data for this image,

and immediately starts delivery of the image data through the ImageConsumer

interface.

 FilteredImageSource

 public FilteredImageSource(ImageProducer orig,
 ImageFilter imgf)

Constructs an ImageProducer object from an existing ImageProducer and a filter

object.

See Also:

ImageFilter, createImage

 addConsumer

 public synchronized void addConsumer(ImageConsumer ic)

Adds an ImageConsumer to the list of consumers interested in data for this image.

See Also:

ImageConsumer

 isConsumer

 public synchronized boolean isConsumer(ImageConsumer ic)

Determines whether an ImageConsumer is on the list of consumers currently

interested in data for this image.

Returns:

true if the ImageConsumer is on the list; false otherwise

See Also:

ImageConsumer

 removeConsumer

 public synchronized void removeConsumer(ImageConsumer ic)

14

Removes an ImageConsumer from the list of consumers interested in data for this

image.

See Also:

ImageConsumer

 startProduction

 public void startProduction(ImageConsumer ic)

Adds an ImageConsumer to the list of consumers interested in data for this image,

and immediately starts delivery of the image data through the ImageConsumer

interface.

See Also:

ImageConsumer

 requestTopDownLeftRightResend

 public void requestTopDownLeftRightResend(ImageConsumer ic)

Requests that a given ImageConsumer have the image data delivered one more

time in top−down, left−right order. The request is handed to the ImageFilter for

further processing, since the ability to preserve the pixel ordering depends on the

filter.

See Also:

ImageConsumer

All Packages Class Hierarchy This Package Previous Next Index

15

All Packages Class Hierarchy This Package Previous Next Index

Interface java.awt.image.ImageConsumer

public interface ImageConsumer

extends Object

The interface for objects expressing interest in image data through the ImageProducer

interfaces. When a consumer is added to an image producer, the producer delivers all of

the data about the image using the method calls defined in this interface.

See Also:

ImageProducer

 COMPLETESCANLINES

The pixels will be delivered in (multiples of) complete scanlines at a time.

 IMAGEABORTED

The image creation process was deliberately aborted.

 IMAGEERROR

An error was encountered while producing the image.

 RANDOMPIXELORDER

The pixels will be delivered in a random order.

 SINGLEFRAME

The image contain a single static image.

 SINGLEFRAMEDONE

One frame of the image is complete but there are more frames to be delivered.

 SINGLEPASS

The pixels will be delivered in a single pass.

 STATICIMAGEDONE

The image is complete and there are no more pixels or frames to be delivered.

 TOPDOWNLEFTRIGHT

The pixels will be delivered in top−down, left−to−right order.

 imageComplete(int)

The imageComplete method is called when the ImageProducer is finished

delivering all of the pixels that the source image contains, or when a single frame

of a multi−frame animation has been completed, or when an error in loading or

producing the image has occured.

16

 setColorModel(ColorModel)

The ColorModel object used for the majority of the pixels reported using the

setPixels method calls.

 setDimensions(int, int)

The dimensions of the source image are reported using the setDimensions method

call.

 setHints(int)

The ImageProducer can deliver the pixels in any order, but the ImageConsumer

may be able to scale or convert the pixels to the destination ColorModel more

efficiently or with higher quality if it knows some information about how the pixels

will be delivered up front.

 setPixels(int, int, int, int, ColorModel, byte[], int, int)

The pixels of the image are delivered using one or more calls to the setPixels

method.

 setPixels(int, int, int, int, ColorModel, int[], int, int)

The pixels of the image are delivered using one or more calls to the setPixels

method.

 setProperties(Hashtable)

Sets the extensible list of properties associated with this image.

 RANDOMPIXELORDER

 public final static int RANDOMPIXELORDER

The pixels will be delivered in a random order. This tells the ImageConsumer not

to use any optimizations that depend on the order of pixel delivery, which should

be the default assumption in the absence of any call to the setHints method.

See Also:

setHints

 TOPDOWNLEFTRIGHT

 public final static int TOPDOWNLEFTRIGHT

The pixels will be delivered in top−down, left−to−right order.

See Also:

setHints

 COMPLETESCANLINES

 public final static int COMPLETESCANLINES

The pixels will be delivered in (multiples of) complete scanlines at a time.

See Also:

setHints

17

 SINGLEPASS

 public final static int SINGLEPASS

The pixels will be delivered in a single pass. Each pixel will appear in only one call

to any of the setPixels methods. An example of an image format which does not

meet this criterion is a progressive JPEG image which defines pixels in multiple

passes, each more refined than the previous.

See Also:

setHints

 SINGLEFRAME

 public final static int SINGLEFRAME

The image contain a single static image. The pixels will be defined in calls to the

setPixels methods and then the imageComplete method will be called with the

STATICIMAGEDONE flag after which no more image data will be delivered. An

example of an image type which would not meet these criteria would be the output

of a video feed, or the representation of a 3D rendering being manipulated by the

user. The end of each frame in those types of images will be indicated by calling

imageComplete with the SINGLEFRAMEDONE flag.

See Also:

setHints, imageComplete

 IMAGEERROR

 public final static int IMAGEERROR

An error was encountered while producing the image.

See Also:

imageComplete

 SINGLEFRAMEDONE

 public final static int SINGLEFRAMEDONE

One frame of the image is complete but there are more frames to be delivered.

See Also:

imageComplete

 STATICIMAGEDONE

 public final static int STATICIMAGEDONE

The image is complete and there are no more pixels or frames to be delivered.

See Also:

imageComplete

18

 IMAGEABORTED

 public final static int IMAGEABORTED

The image creation process was deliberately aborted.

See Also:

imageComplete

 setDimensions

 public abstract void setDimensions(int width,
 int height)

The dimensions of the source image are reported using the setDimensions method

call.

 setProperties

 public abstract void setProperties(Hashtable props)

Sets the extensible list of properties associated with this image.

 setColorModel

 public abstract void setColorModel(ColorModel model)

The ColorModel object used for the majority of the pixels reported using the

setPixels method calls. Note that each set of pixels delivered using setPixels

contains its own ColorModel object, so no assumption should be made that this

model will be the only one used in delivering pixel values. A notable case where

multiple ColorModel objects may be seen is a filtered image when for each set of

pixels that it filters, the filter determines whether the pixels can be sent on

untouched, using the original ColorModel, or whether the pixels should be

modified (filtered) and passed on using a ColorModel more convenient for the

filtering process.

See Also:

ColorModel

 setHints

 public abstract void setHints(int hintflags)

The ImageProducer can deliver the pixels in any order, but the ImageConsumer

may be able to scale or convert the pixels to the destination ColorModel more

efficiently or with higher quality if it knows some information about how the pixels

19

will be delivered up front. The setHints method should be called before any calls to

any of the setPixels methods with a bit mask of hints about the manner in which

the pixels will be delivered. If the ImageProducer does not follow the guidelines for

the indicated hint, the results are undefined.

 setPixels

 public abstract void setPixels(int x,
 int y,
 int w,
 int h,
 ColorModel model,
 byte pixels[],
 int off,
 int scansize)

The pixels of the image are delivered using one or more calls to the setPixels

method. Each call specifies the location and size of the rectangle of source pixels

that are contained in the array of pixels. The specified ColorModel object should be

used to convert the pixels into their corresponding color and alpha components.

Pixel (m,n) is stored in the pixels array at index (n * scansize + m + off). The pixels

delivered using this method are all stored as bytes.

See Also:

ColorModel

 setPixels

 public abstract void setPixels(int x,
 int y,
 int w,
 int h,
 ColorModel model,
 int pixels[],
 int off,
 int scansize)

The pixels of the image are delivered using one or more calls to the setPixels

method. Each call specifies the location and size of the rectangle of source pixels

that are contained in the array of pixels. The specified ColorModel object should be

used to convert the pixels into their corresponding color and alpha components.

Pixel (m,n) is stored in the pixels array at index (n * scansize + m + off). The pixels

delivered using this method are all stored as ints.

See Also:

ColorModel

 imageComplete

 public abstract void imageComplete(int status)

The imageComplete method is called when the ImageProducer is finished

delivering all of the pixels that the source image contains, or when a single frame

20

of a multi−frame animation has been completed, or when an error in loading or

producing the image has occured. The ImageConsumer should remove itself from

the list of consumers registered with the ImageProducer at this time, unless it is

interested in successive frames.

See Also:

removeConsumer

All Packages Class Hierarchy This Package Previous Next Index

21

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.ImageFilter

java.lang.Object
 |
 +−−−−java.awt.image.ImageFilter

public class ImageFilter

extends Object

implements ImageConsumer, Cloneable

This class implements a filter for the set of interface methods that are used to deliver

data from an ImageProducer to an ImageConsumer. It is meant to be used in

conjunction with a FilteredImageSource object to produce filtered versions of existing

images. It is a base class that provides the calls needed to implement a "Null filter"

which has no effect on the data being passed through. Filters should subclass this class

and override the methods which deal with the data that needs to be filtered and modify

it as necessary.

See Also:

FilteredImageSource, ImageConsumer

 consumer

The consumer of the particular image data stream for which this instance of the

ImageFilter is filtering data.

 ImageFilter()

 clone()

Clones this object.

22

 getFilterInstance(ImageConsumer)

Returns a unique instance of an ImageFilter object which will actually perform the

filtering for the specified ImageConsumer.

 imageComplete(int)

Filters the information provided in the imageComplete method of the

ImageConsumer interface.

 resendTopDownLeftRight(ImageProducer)

Responds to a request for a TopDownLeftRight (TDLR) ordered resend of the pixel

data from an ImageConsumer.

 setColorModel(ColorModel)

Filter the information provided in the setColorModel method of the

ImageConsumer interface.

 setDimensions(int, int)

Filters the information provided in the setDimensions method of the

ImageConsumer interface.

 setHints(int)

Filters the information provided in the setHints method of the ImageConsumer

interface.

 setPixels(int, int, int, int, ColorModel, byte[], int, int)

Filters the information provided in the setPixels method of the ImageConsumer

interface which takes an array of bytes.

 setPixels(int, int, int, int, ColorModel, int[], int, int)

Filters the information provided in the setPixels method of the ImageConsumer

interface which takes an array of integers.

 setProperties(Hashtable)

Passes the properties from the source object along after adding a property

indicating the stream of filters it has been run through.

 consumer

 protected ImageConsumer consumer

The consumer of the particular image data stream for which this instance of the

ImageFilter is filtering data. It is not initialized during the constructor, but rather

during the getFilterInstance() method call when the FilteredImageSource is

creating a unique instance of this object for a particular image data stream.

See Also:

getFilterInstance, ImageConsumer

 ImageFilter

 public ImageFilter()

23

 getFilterInstance

 public ImageFilter getFilterInstance(ImageConsumer ic)

Returns a unique instance of an ImageFilter object which will actually perform the

filtering for the specified ImageConsumer. The default implementation just clones

this object.

 setDimensions

 public void setDimensions(int width,
 int height)

Filters the information provided in the setDimensions method of the

ImageConsumer interface.

See Also:

setDimensions

 setProperties

 public void setProperties(Hashtable props)

Passes the properties from the source object along after adding a property

indicating the stream of filters it has been run through.

 setColorModel

 public void setColorModel(ColorModel model)

Filter the information provided in the setColorModel method of the

ImageConsumer interface.

See Also:

setColorModel

 setHints

 public void setHints(int hints)

Filters the information provided in the setHints method of the ImageConsumer

interface.

See Also:

setHints

24

 setPixels

 public void setPixels(int x,
 int y,
 int w,
 int h,
 ColorModel model,
 byte pixels[],
 int off,
 int scansize)

Filters the information provided in the setPixels method of the ImageConsumer

interface which takes an array of bytes.

See Also:

setPixels

 setPixels

 public void setPixels(int x,
 int y,
 int w,
 int h,
 ColorModel model,
 int pixels[],
 int off,
 int scansize)

Filters the information provided in the setPixels method of the ImageConsumer

interface which takes an array of integers.

See Also:

setPixels

 imageComplete

 public void imageComplete(int status)

Filters the information provided in the imageComplete method of the

ImageConsumer interface.

See Also:

imageComplete

 resendTopDownLeftRight

 public void resendTopDownLeftRight(ImageProducer ip)

Responds to a request for a TopDownLeftRight (TDLR) ordered resend of the pixel

data from an ImageConsumer. The ImageFilter can respond to this request in one

of three ways.

1. If the filter can determine that it will forward the pixels in TDLR order if its

upstream producer object sends them in TDLR order, then the request is

automatically forwarded by default to the indicated ImageProducer using

this filter as the requesting ImageConsumer, so no override is necessary.

25

2. If the filter can resend the pixels in the right order on its own (presumably

because the generated pixels have been saved in some sort of buffer), then it

can override this method and simply resend the pixels in TDLR order as

specified in the ImageProducer API.

3. If the filter simply returns from this method then the request will be ignored

and no resend will occur.

@see ImageProducer#requestTopDownLeftRightResend

Parameters:

ip − The ImageProducer that is feeding this instance of the filter − also the

ImageProducer that the request should be forwarded to if necessary.

 clone

 public Object clone()

Clones this object.

Overrides:

clone in class Object

All Packages Class Hierarchy This Package Previous Next Index

26

All Packages Class Hierarchy This Package Previous Next Index

Interface java.awt.image.ImageObserver

public interface ImageObserver

extends Object

An asynchronous update interface for receiving notifications about Image information as

the Image is constructed.

 ABORT

An image which was being tracked asynchronously was aborted before production

was complete.

 ALLBITS

A static image which was previously drawn is now complete and can be drawn

again in its final form.

 ERROR

An image which was being tracked asynchronously has encountered an error.

 FRAMEBITS

Another complete frame of a multi−frame image which was previously drawn is

now available to be drawn again.

 HEIGHT

The height of the base image is now available and can be taken from the height

argument to the imageUpdate callback method.

 PROPERTIES

The properties of the image are now available.

 SOMEBITS

More pixels needed for drawing a scaled variation of the image are available.

 WIDTH

The width of the base image is now available and can be taken from the width

argument to the imageUpdate callback method.

 imageUpdate(Image, int, int, int, int, int)

This method is called when information about an image which was previously

requested using an asynchronous interface becomes available.

27

 WIDTH

 public final static int WIDTH

The width of the base image is now available and can be taken from the width

argument to the imageUpdate callback method.

See Also:

getWidth, imageUpdate

 HEIGHT

 public final static int HEIGHT

The height of the base image is now available and can be taken from the height

argument to the imageUpdate callback method.

See Also:

getHeight, imageUpdate

 PROPERTIES

 public final static int PROPERTIES

The properties of the image are now available.

See Also:

getProperty, imageUpdate

 SOMEBITS

 public final static int SOMEBITS

More pixels needed for drawing a scaled variation of the image are available. The

bounding box of the new pixels can be taken from the x, y, width, and height

arguments to the imageUpdate callback method.

See Also:

drawImage, imageUpdate

 FRAMEBITS

 public final static int FRAMEBITS

Another complete frame of a multi−frame image which was previously drawn is

now available to be drawn again. The x, y, width, and height arguments to the

imageUpdate callback method should be ignored.

See Also:

drawImage, imageUpdate

28

 ALLBITS

 public final static int ALLBITS

A static image which was previously drawn is now complete and can be drawn

again in its final form. The x, y, width, and height arguments to the imageUpdate

callback method should be ignored.

See Also:

drawImage, imageUpdate

 ERROR

 public final static int ERROR

An image which was being tracked asynchronously has encountered an error. No

further information will become available and drawing the image will fail. As a

convenience, the ABORT flag will be indicated at the same time to indicate that

the image production was aborted.

See Also:

imageUpdate

 ABORT

 public final static int ABORT

An image which was being tracked asynchronously was aborted before production

was complete. No more information will become available without further action to

trigger another image production sequence. If the ERROR flag was not also set in

this image update, then accessing any of the data in the image will restart the

production again, probably from the beginning.

See Also:

imageUpdate

 imageUpdate

 public abstract boolean imageUpdate(Image img,
 int infoflags,
 int x,
 int y,
 int width,
 int height)

This method is called when information about an image which was previously

requested using an asynchronous interface becomes available. Asynchronous

interfaces are method calls such as getWidth(ImageObserver) and drawImage(img,

x, y, ImageObserver) which take an ImageObserver object as an argument. Those

29

methods register the caller as interested either in information about the overall

image itself (in the case of getWidth(ImageObserver)) or about an output version of

an image (in the case of the drawImage(img, x, y, [w, h,] ImageObserver) call).

This method should return true if further updates are needed or false if the

required information has been acquired. The image which was being tracked is

passed in using the img argument. Various constants are combined to form the

infoflags argument which indicates what information about the image is now

available. The interpretation of the x, y, width, and height arguments depends on

the contents of the infoflags argument.

See Also:

getWidth, getHeight, drawImage

All Packages Class Hierarchy This Package Previous Next Index

30

All Packages Class Hierarchy This Package Previous Next Index

Interface java.awt.image.ImageProducer

public interface ImageProducer

extends Object

The interface for objects which can produce the image data for Images. Each image

contains an ImageProducer which is used to reconstruct the image whenever it is

needed, for example, when a new size of the Image is scaled, or when the width or height

of the Image is being requested.

See Also:

ImageConsumer

 addConsumer(ImageConsumer)

This method is used to register an ImageConsumer with the ImageProducer for

access to the image data during a later reconstruction of the Image.

 isConsumer(ImageConsumer)

This method determines if a given ImageConsumer object is currently registered

with this ImageProducer as one of its consumers.

 removeConsumer(ImageConsumer)

This method removes the given ImageConsumer object from the list of consumers

currently registered to receive image data.

 requestTopDownLeftRightResend(ImageConsumer)

This method is used by an ImageConsumer to request that the ImageProducer

attempt to resend the image data one more time in TOPDOWNLEFTRIGHT order

so that higher quality conversion algorithms which depend on receiving pixels in

order can be used to produce a better output version of the image.

 startProduction(ImageConsumer)

This method both registers the given ImageConsumer object as a consumer and

starts an immediate reconstruction of the image data which will then be delivered

to this consumer and any other consumer which may have already been registered

with the producer.

 addConsumer

 public abstract void addConsumer(ImageConsumer ic)

31

This method is used to register an ImageConsumer with the ImageProducer for

access to the image data during a later reconstruction of the Image. The

ImageProducer may, at its discretion, start delivering the image data to the

consumer using the ImageConsumer interface immediately, or when the next

available image reconstruction is triggered by a call to the startProduction method.

See Also:

startProduction

 isConsumer

 public abstract boolean isConsumer(ImageConsumer ic)

This method determines if a given ImageConsumer object is currently registered

with this ImageProducer as one of its consumers.

 removeConsumer

 public abstract void removeConsumer(ImageConsumer ic)

This method removes the given ImageConsumer object from the list of consumers

currently registered to receive image data. It is not considered an error to remove a

consumer that is not currently registered. The ImageProducer should stop sending

data to this consumer as soon as is feasible.

 startProduction

 public abstract void startProduction(ImageConsumer ic)

This method both registers the given ImageConsumer object as a consumer and

starts an immediate reconstruction of the image data which will then be delivered

to this consumer and any other consumer which may have already been registered

with the producer. This method differs from the addConsumer method in that a

reproduction of the image data should be triggered as soon as possible.

See Also:

addConsumer

 requestTopDownLeftRightResend

 public abstract void requestTopDownLeftRightResend(ImageConsumer ic)

This method is used by an ImageConsumer to request that the ImageProducer

attempt to resend the image data one more time in TOPDOWNLEFTRIGHT order

so that higher quality conversion algorithms which depend on receiving pixels in

order can be used to produce a better output version of the image. The

ImageProducer is free to ignore this call if it cannot resend the data in that order.

If the data can be resent, then the ImageProducer should respond by executing the

following minimum set of ImageConsumer method calls:

32

 ic.setHints(TOPDOWNLEFTRIGHT | < otherhints >);
 ic.setPixels(...); // As many times as needed
 ic.imageComplete();

See Also:

setHints

All Packages Class Hierarchy This Package Previous Next Index

33

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.IndexColorModel

java.lang.Object
 |
 +−−−−java.awt.image.ColorModel
 |
 +−−−−java.awt.image.IndexColorModel

public class IndexColorModel

extends ColorModel

A ColorModel class that specifies a translation from pixel values to alpha, red, green,

and blue color components for pixels which represent indices into a fixed colormap. An

optional transparent pixel value can be supplied which indicates a completely

transparent pixel, regardless of any alpha value recorded for that pixel value. This color

model is similar to an X11 PseudoColor visual.

Many of the methods in this class are final. The reason for this is that the underlying

native graphics code makes assumptions about the layout and operation of this class and

those assumptions are reflected in the implementations of the methods here that are

marked final. You can subclass this class for other reaons, but you cannot override or

modify the behaviour of those methods.

See Also:

ColorModel

 IndexColorModel(int, int, byte[], byte[], byte[])

Constructs an IndexColorModel from the given arrays of red, green, and blue

components.

 IndexColorModel(int, int, byte[], byte[], byte[], int)

Constructs an IndexColorModel from the given arrays of red, green, and blue

components.

 IndexColorModel(int, int, byte[], byte[], byte[], byte[])

Constructs an IndexColorModel from the given arrays of red, green, blue and

alpha components.

 IndexColorModel(int, int, byte[], int, boolean)

Constructs an IndexColorModel from a single arrays of packed red, green, blue and

34

optional alpha components.

 IndexColorModel(int, int, byte[], int, boolean, int)

Constructs an IndexColorModel from a single arrays of packed red, green, blue and

optional alpha components.

 getAlpha(int)

Returns the alpha transparency value for the specified pixel in the range 0−255.

 getAlphas(byte[])

Copies the array of alpha transparency values into the given array.

 getBlue(int)

Returns the blue color compoment for the specified pixel in the range 0−255.

 getBlues(byte[])

Copies the array of blue color components into the given array.

 getGreen(int)

Returns the green color compoment for the specified pixel in the range 0−255.

 getGreens(byte[])

Copies the array of green color components into the given array.

 getMapSize()

Returns the size of the color component arrays in this IndexColorModel.

 getRGB(int)

Returns the color of the pixel in the default RGB color model.

 getRed(int)

Returns the red color compoment for the specified pixel in the range 0−255.

 getReds(byte[])

Copies the array of red color components into the given array.

 getTransparentPixel()

Returns the index of the transparent pixel in this IndexColorModel or −1 if there is

no transparent pixel.

 IndexColorModel

 public IndexColorModel(int bits,
 int size,
 byte r[],
 byte g[],
 byte b[])

Constructs an IndexColorModel from the given arrays of red, green, and blue

components. Pixels described by this color model will all have alpha components of

255 (fully opaque). All of the arrays specifying the color components must have at

least the specified number of entries.

Parameters:

35

bits − The number of bits each pixel occupies.

size − The size of the color component arrays.

r − The array of red color components.

g − The array of green color components.

b − The array of blue color components.

 IndexColorModel

 public IndexColorModel(int bits,
 int size,
 byte r[],
 byte g[],
 byte b[],
 int trans)

Constructs an IndexColorModel from the given arrays of red, green, and blue

components. Pixels described by this color model will all have alpha components of

255 (fully opaque), except for the indicated transparent pixel. All of the arrays

specifying the color components must have at least the specified number of entries.

Parameters:

bits − The number of bits each pixel occupies.

size − The size of the color component arrays.

r − The array of red color components.

g − The array of green color components.

b − The array of blue color components.

trans − The index of the transparent pixel.

 IndexColorModel

 public IndexColorModel(int bits,
 int size,
 byte r[],
 byte g[],
 byte b[],
 byte a[])

Constructs an IndexColorModel from the given arrays of red, green, blue and

alpha components. All of the arrays specifying the color components must have at

least the specified number of entries.

Parameters:

bits − The number of bits each pixel occupies.

size − The size of the color component arrays.

r − The array of red color components.

g − The array of green color components.

b − The array of blue color components.

a − The array of alpha value components.

 IndexColorModel

 public IndexColorModel(int bits,
 int size,

36

 byte cmap[],
 int start,
 boolean hasalpha)

Constructs an IndexColorModel from a single arrays of packed red, green, blue and

optional alpha components. The array must have enough values in it to fill all of

the needed component arrays of the specified size.

Parameters:

bits − The number of bits each pixel occupies.

size − The size of the color component arrays.

cmap − The array of color components.

start − The starting offset of the first color component.

hasalpha − Indicates whether alpha values are contained in the cmap array.

 IndexColorModel

 public IndexColorModel(int bits,
 int size,
 byte cmap[],
 int start,
 boolean hasalpha,
 int trans)

Constructs an IndexColorModel from a single arrays of packed red, green, blue and

optional alpha components. The specified transparent index represents a pixel

which will be considered entirely transparent regardless of any alpha value

specified for it. The array must have enough values in it to fill all of the needed

component arrays of the specified size.

Parameters:

bits − The number of bits each pixel occupies.

size − The size of the color component arrays.

cmap − The array of color components.

start − The starting offset of the first color component.

hasalpha − Indicates whether alpha values are contained in the cmap array.

trans − The index of the fully transparent pixel.

 getMapSize

 public final int getMapSize()

Returns the size of the color component arrays in this IndexColorModel.

 getTransparentPixel

 public final int getTransparentPixel()

37

Returns the index of the transparent pixel in this IndexColorModel or −1 if there is

no transparent pixel.

 getReds

 public final void getReds(byte r[])

Copies the array of red color components into the given array. Only the initial

entries of the array as specified by getMapSize() are written.

 getGreens

 public final void getGreens(byte g[])

Copies the array of green color components into the given array. Only the initial

entries of the array as specified by getMapSize() are written.

 getBlues

 public final void getBlues(byte b[])

Copies the array of blue color components into the given array. Only the initial

entries of the array as specified by getMapSize() will be written.

 getAlphas

 public final void getAlphas(byte a[])

Copies the array of alpha transparency values into the given array. Only the

initial entries of the array as specified by getMapSize() will be written.

 getRed

 public final int getRed(int pixel)

Returns the red color compoment for the specified pixel in the range 0−255.

Overrides:

getRed in class ColorModel

 getGreen

 public final int getGreen(int pixel)

Returns the green color compoment for the specified pixel in the range 0−255.

Overrides:

getGreen in class ColorModel

 getBlue

38

 public final int getBlue(int pixel)

Returns the blue color compoment for the specified pixel in the range 0−255.

Overrides:

getBlue in class ColorModel

 getAlpha

 public final int getAlpha(int pixel)

Returns the alpha transparency value for the specified pixel in the range 0−255.

Overrides:

getAlpha in class ColorModel

 getRGB

 public final int getRGB(int pixel)

Returns the color of the pixel in the default RGB color model.

Overrides:

getRGB in class ColorModel

See Also:

getRGBdefault

All Packages Class Hierarchy This Package Previous Next Index

39

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.MemoryImageSource

java.lang.Object
 |
 +−−−−java.awt.image.MemoryImageSource

public class MemoryImageSource

extends Object

implements ImageProducer

This class is an implementation of the ImageProducer interface which uses an array to

produce pixel values for an Image. Here is an example which calculates a 100x100 image

representing a fade from black to blue along the X axis and a fade from black to red

along the Y axis:

 int w = 100;
 int h = 100;
 int pix[] = new int[w * h];
 int index = 0;
 for (int y = 0; y < h; y++) {
 int red = (y * 255) / (h − 1);
 for (int x = 0; x < w; x++) {
 int blue = (x * 255) / (w − 1);
 pix[index++] = (255

 MemoryImageSource(int, int, ColorModel, byte[], int, int)

 Constructs an ImageProducer object which uses an array of bytes
to produce data for an Image object.

 MemoryImageSource(int, int, ColorModel, byte[], int, int, Hashtable)

 Constructs an ImageProducer object which uses an array of bytes
to produce data for an Image object.

 MemoryImageSource(int, int, ColorModel, int[], int, int)

 Constructs an ImageProducer object which uses an array of integers
to produce data for an Image object.

 MemoryImageSource(int, int, ColorModel, int[], int, int, Hashtable)

40

 Constructs an ImageProducer object which uses an array of integers
to produce data for an Image object.

 MemoryImageSource(int, int, int[], int, int)

 Constructs an ImageProducer object which uses an array of integers
in the default RGB ColorModel to produce data for an Image object.

 MemoryImageSource(int, int, int[], int, int, Hashtable)

 Constructs an ImageProducer object which uses an array of integers
in the default RGB ColorModel to produce data for an Image object.

 addConsumer(ImageConsumer)

 Adds an ImageConsumer to the list of consumers interested in
data for this image.

 isConsumer(ImageConsumer)

 Determine if an ImageConsumer is on the list of consumers currently
interested in data for this image.

 removeConsumer(ImageConsumer)

 Remove an ImageConsumer from the list of consumers interested in
data for this image.

 requestTopDownLeftRightResend(ImageConsumer)

 Requests that a given ImageConsumer have the image data delivered
one more time in top−down, left−right order.

 startProduction(ImageConsumer)

 Adds an ImageConsumer to the list of consumers interested in
data for this image, and immediately start delivery of the
image data through the ImageConsumer interface.

41

MemoryImageSource

 public MemoryImageSource(int w,
 int h,
 ColorModel cm,
 byte pix[],
 int off,
 int scan)

Constructs an ImageProducer object which uses an array of bytes to produce data

for an Image object.

See Also:

createImage

 MemoryImageSource

 public MemoryImageSource(int w,
 int h,
 ColorModel cm,
 byte pix[],
 int off,
 int scan,
 Hashtable props)

Constructs an ImageProducer object which uses an array of bytes to produce data

for an Image object.

See Also:

createImage

 MemoryImageSource

 public MemoryImageSource(int w,
 int h,
 ColorModel cm,
 int pix[],
 int off,
 int scan)

Constructs an ImageProducer object which uses an array of integers to produce

data for an Image object.

See Also:

createImage

 MemoryImageSource

 public MemoryImageSource(int w,
 int h,
 ColorModel cm,
 int pix[],
 int off,
 int scan,
 Hashtable props)

42

Constructs an ImageProducer object which uses an array of integers to produce

data for an Image object.

See Also:

createImage

 MemoryImageSource

 public MemoryImageSource(int w,
 int h,
 int pix[],
 int off,
 int scan)

Constructs an ImageProducer object which uses an array of integers in the default

RGB ColorModel to produce data for an Image object.

See Also:

createImage, getRGBdefault

 MemoryImageSource

 public MemoryImageSource(int w,
 int h,
 int pix[],
 int off,
 int scan,
 Hashtable props)

Constructs an ImageProducer object which uses an array of integers in the default

RGB ColorModel to produce data for an Image object.

See Also:

createImage, getRGBdefault

 addConsumer

 public synchronized void addConsumer(ImageConsumer ic)

Adds an ImageConsumer to the list of consumers interested in data for this image.

See Also:

ImageConsumer

 isConsumer

 public synchronized boolean isConsumer(ImageConsumer ic)

Determine if an ImageConsumer is on the list of consumers currently interested in

43

data for this image.

Returns:

true if the ImageConsumer is on the list; false otherwise

See Also:

ImageConsumer

 removeConsumer

 public synchronized void removeConsumer(ImageConsumer ic)

Remove an ImageConsumer from the list of consumers interested in data for this

image.

See Also:

ImageConsumer

 startProduction

 public void startProduction(ImageConsumer ic)

Adds an ImageConsumer to the list of consumers interested in data for this image,

and immediately start delivery of the image data through the ImageConsumer

interface.

See Also:

ImageConsumer

 requestTopDownLeftRightResend

 public void requestTopDownLeftRightResend(ImageConsumer ic)

Requests that a given ImageConsumer have the image data delivered one more

time in top−down, left−right order.

See Also:

ImageConsumer

All Packages Class Hierarchy This Package Previous Next Index

44

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.PixelGrabber

java.lang.Object
 |
 +−−−−java.awt.image.PixelGrabber

public class PixelGrabber

extends Object

implements ImageConsumer

The PixelGrabber class implements an ImageConsumer which can be attached to an

Image or ImageProducer object to retrieve a subset of the pixels in that image. Here is

an example:

public abstract void handlesinglepixel(int x, int y, int pixel);
public void handlepixels(Image img, int x, int y, int w, int h) {
 int[] pixels = new int[w * h];
 PixelGrabber pg = new PixelGrabber(img, x, y, w, h, pixels, 0, w);
 try {
 pg.grabPixels();
 } catch (InterruptedException e) {
 System.err.println("interrupted waiting for pixels!");
 return;
 }
 if ((pg.status() & ImageObserver.ABORT) != 0) {
 System.err.println("image fetch aborted or errored");
 return;
 }
 for (int j = 0; j < h; j++) {
 for (int i = 0; i < w; i++) {
 handlesinglepixel(x+i, y+j, pixels[j * w + i]);
 }
 }
}

 PixelGrabber(Image, int, int, int, int, int[], int, int)

Create a PixelGrabber object to grab the (x, y, w, h) rectangular section of pixels

from the specified image into the given array.

 PixelGrabber(ImageProducer, int, int, int, int, int[], int, int)

Create a PixelGrabber object to grab the (x, y, w, h) rectangular section of pixels

from the image produced by the specified ImageProducer into the given array.

45

 grabPixels()

Request the Image or ImageProducer to start delivering pixels and wait for all of

the pixels in the rectangle of interest to be delivered.

 grabPixels(long)

Request the Image or ImageProducer to start delivering pixels and wait for all of

the pixels in the rectangle of interest to be delivered or until the specified timeout

has elapsed.

 imageComplete(int)

The imageComplete method is part of the ImageConsumer API which this class

must implement to retrieve the pixels.

 setColorModel(ColorModel)

The setColorModel method is part of the ImageConsumer API which this class

must implement to retrieve the pixels.

 setDimensions(int, int)

The setDimensions method is part of the ImageConsumer API which this class

must implement to retrieve the pixels.

 setHints(int)

The setHints method is part of the ImageConsumer API which this class must

implement to retrieve the pixels.

 setPixels(int, int, int, int, ColorModel, byte[], int, int)

The setPixels method is part of the ImageConsumer API which this class must

implement to retrieve the pixels.

 setPixels(int, int, int, int, ColorModel, int[], int, int)

The setPixels method is part of the ImageConsumer API which this class must

implement to retrieve the pixels.

 setProperties(Hashtable)

The setProperties method is part of the ImageConsumer API which this class must

implement to retrieve the pixels.

 status()

Return the status of the pixels.

 PixelGrabber

 public PixelGrabber(Image img,
 int x,
 int y,
 int w,
 int h,
 int pix[],
 int off,
 int scansize)

Create a PixelGrabber object to grab the (x, y, w, h) rectangular section of pixels

46

from the specified image into the given array. The pixels are stored into the array

in the default RGB ColorModel. The RGB data for pixel (i, j) where (i, j) is inside

the rectangle (x, y, w, h) is stored in the array at pix[(j − y) * scansize +
(i − x) + off].

Parameters:

img − the image to retrieve pixels from

x − the x coordinate of the upper left corner of the rectangle of pixels to

retrieve from the image, relative to the default (unscaled) size of the image

y − the y coordinate of the upper left corner of the rectangle of pixels to

retrieve from the image

w − the width of the rectangle of pixels to retrieve

h − the height of the rectangle of pixels to retrieve

pix − the array of integers which are to be used to hold the RGB pixels

retrieved from the image

off − the offset into the array of where to store the first pixel

scansize − the distance from one row of pixels to the next in the array

See Also:

getRGBdefault

 PixelGrabber

 public PixelGrabber(ImageProducer ip,
 int x,
 int y,
 int w,
 int h,
 int pix[],
 int off,
 int scansize)

Create a PixelGrabber object to grab the (x, y, w, h) rectangular section of pixels

from the image produced by the specified ImageProducer into the given array. The

pixels are stored into the array in the default RGB ColorModel. The RGB data for

pixel (i, j) where (i, j) is inside the rectangle (x, y, w, h) is stored in the array at

pix[(j − y) * scansize + (i − x) + off].

Parameters:

img − the image to retrieve pixels from

x − the x coordinate of the upper left corner of the rectangle of pixels to

retrieve from the image, relative to the default (unscaled) size of the image

y − the y coordinate of the upper left corner of the rectangle of pixels to

retrieve from the image

w − the width of the rectangle of pixels to retrieve

h − the height of the rectangle of pixels to retrieve

pix − the array of integers which are to be used to hold the RGB pixels

retrieved from the image

off − the offset into the array of where to store the first pixel

scansize − the distance from one row of pixels to the next in the array

See Also:

getRGBdefault

47

 grabPixels

 public boolean grabPixels() throws InterruptedException

Request the Image or ImageProducer to start delivering pixels and wait for all of

the pixels in the rectangle of interest to be delivered.

Returns:

true if the pixels were successfully grabbed, false on abort, error or timeout

Throws:InterruptedException

Another thread has interrupted this thread.

 grabPixels

 public synchronized boolean grabPixels(long ms) throws InterruptedException

Request the Image or ImageProducer to start delivering pixels and wait for all of

the pixels in the rectangle of interest to be delivered or until the specified timeout

has elapsed.

Parameters:

ms − the number of milliseconds to wait for the image pixels to arrive before

timing out

Returns:

true if the pixels were successfully grabbed, false on abort, error or timeout

Throws:InterruptedException

Another thread has interrupted this thread.

 status

 public synchronized int status()

Return the status of the pixels. The ImageObserver flags representing the

available pixel information are returned.

Returns:

the bitwise OR of all relevant ImageObserver flags

See Also:

ImageObserver

 setDimensions

 public void setDimensions(int width,
 int height)

The setDimensions method is part of the ImageConsumer API which this class

must implement to retrieve the pixels.

48

 setHints

 public void setHints(int hints)

The setHints method is part of the ImageConsumer API which this class must

implement to retrieve the pixels.

 setProperties

 public void setProperties(Hashtable props)

The setProperties method is part of the ImageConsumer API which this class must

implement to retrieve the pixels.

 setColorModel

 public void setColorModel(ColorModel model)

The setColorModel method is part of the ImageConsumer API which this class

must implement to retrieve the pixels.

 setPixels

 public void setPixels(int srcX,
 int srcY,
 int srcW,
 int srcH,
 ColorModel model,
 byte pixels[],
 int srcOff,
 int srcScan)

The setPixels method is part of the ImageConsumer API which this class must

implement to retrieve the pixels.

 setPixels

 public void setPixels(int srcX,
 int srcY,
 int srcW,
 int srcH,
 ColorModel model,
 int pixels[],
 int srcOff,
 int srcScan)

The setPixels method is part of the ImageConsumer API which this class must

implement to retrieve the pixels.

 imageComplete

 public synchronized void imageComplete(int status)

49

The imageComplete method is part of the ImageConsumer API which this class

must implement to retrieve the pixels.

All Packages Class Hierarchy This Package Previous Next Index

50

All Packages Class Hierarchy This Package Previous Next Index

Class java.awt.image.RGBImageFilter

java.lang.Object
 |
 +−−−−java.awt.image.ImageFilter
 |
 +−−−−java.awt.image.RGBImageFilter

public class RGBImageFilter

extends ImageFilter

This class provides an easy way to create an ImageFilter which modifies the pixels of an

image in the default RGB ColorModel. It is meant to be used in conjunction with a

FilteredImageSource object to produce filtered versions of existing images. It is an

abstract class that provides the calls needed to channel all of the pixel data through a

single method which converts pixels one at a time in the default RGB ColorModel

regardless of the ColorModel being used by the ImageProducer. The only method which

needs to be defined to create a useable image filter is the filterRGB method. Here is an

example of a definition of a filter which swaps the red and blue components of an image:

 class RedBlueSwapFilter extends RGBImageFilter {
 public RedBlueSwapFilter() {
 // The filter’s operation does not depend on the
 // pixel’s location, so IndexColorModels can be
 // filtered directly.
 canFilterIndexColorModel = true;
 }
 public int filterRGB(int x, int y, int rgb) {
 return ((rgb & 0xff00ff00)
 | ((rgb & 0xff0000) >> 16)
 | ((rgb & 0xff)

 canFilterIndexColorModel

 This boolean indicates whether or not it is acceptable to apply
the color filtering of the filterRGB method to the color table
entries of an IndexColorModel object in lieu of pixel by pixel
filtering.

51

 newmodel

 origmodel

 RGBImageFilter()

 filterIndexColorModel(IndexColorModel)

 Filters an IndexColorModel object by running each entry in its
color tables through the filterRGB function that RGBImageFilter
subclasses must provide.

 filterRGB(int, int, int)

 Subclasses must specify a method to convert a single input pixel
in the default RGB ColorModel to a single output pixel.

 filterRGBPixels(int, int, int, int, int[], int, int)

 Filters a buffer of pixels in the default RGB ColorModel by passing
them one by one through the filterRGB method.

 setColorModel(ColorModel)

 If the ColorModel is an IndexColorModel, and the subclass has
set the canFilterIndexColorModel flag to true, we substitute
a filtered version of the color model here and wherever
that original ColorModel object appears in the setPixels methods.

 setPixels(int, int, int, int, ColorModel, byte[], int, int)

 If the ColorModel object is the same one that has already

52

been converted, then simply passes the pixels through with the
converted ColorModel.

 setPixels(int, int, int, int, ColorModel, int[], int, int)

 If the ColorModel object is the same one that has already
been converted, then simply passes the pixels through with the
converted ColorModel, otherwise converts the buffer of integer
pixels to the default RGB ColorModel and passes the converted
buffer to the filterRGBPixels method to be converted one by one.

 substituteColorModel(ColorModel, ColorModel)

 Registers two ColorModel objects for substitution.

origmodel

 protected ColorModel origmodel

 newmodel

 protected ColorModel newmodel

 canFilterIndexColorModel

 protected boolean canFilterIndexColorModel

This boolean indicates whether or not it is acceptable to apply the color filtering of

the filterRGB method to the color table entries of an IndexColorModel object in

lieu of pixel by pixel filtering. Subclasses should set this variable to true in their

constructor if their filterRGB method does not depend on the coordinate of the

pixel being filtered.

See Also:

substituteColorModel, filterRGB, IndexColorModel

 RGBImageFilter

 public RGBImageFilter()

53

 setColorModel

 public void setColorModel(ColorModel model)

If the ColorModel is an IndexColorModel, and the subclass has set the

canFilterIndexColorModel flag to true, we substitute a filtered version of the color

model here and wherever that original ColorModel object appears in the setPixels

methods. Otherwise overrides the default ColorModel used by the ImageProducer

and specifies the default RGB ColorModel instead.

Overrides:

setColorModel in class ImageFilter

See Also:

ImageConsumer, getRGBdefault

 substituteColorModel

 public void substituteColorModel(ColorModel oldcm,
 ColorModel newcm)

Registers two ColorModel objects for substitution. If the oldcm is encountered

during any of the setPixels methods, the newcm is substituted and the pixels

passed through untouched (but with the new ColorModel object).

Parameters:

oldcm − the ColorModel object to be replaced on the fly

newcm − the ColorModel object to replace oldcm on the fly

 filterIndexColorModel

 public IndexColorModel filterIndexColorModel(IndexColorModel icm)

Filters an IndexColorModel object by running each entry in its color tables through

the filterRGB function that RGBImageFilter subclasses must provide. Uses

coordinates of −1 to indicate that a color table entry is being filtered rather than

an actual pixel value.

Parameters:

icm − the IndexColorModel object to be filtered

Returns:

a new IndexColorModel representing the filtered colors

 filterRGBPixels

 public void filterRGBPixels(int x,
 int y,
 int w,
 int h,
 int pixels[],
 int off,

54

 int scansize)

Filters a buffer of pixels in the default RGB ColorModel by passing them one by

one through the filterRGB method.

See Also:

getRGBdefault, filterRGB

 setPixels

 public void setPixels(int x,
 int y,
 int w,
 int h,
 ColorModel model,
 byte pixels[],
 int off,
 int scansize)

If the ColorModel object is the same one that has already been converted, then

simply passes the pixels through with the converted ColorModel. Otherwise

converts the buffer of byte pixels to the default RGB ColorModel and passes the

converted buffer to the filterRGBPixels method to be converted one by one.

Overrides:

setPixels in class ImageFilter

See Also:

getRGBdefault, filterRGBPixels

 setPixels

 public void setPixels(int x,
 int y,
 int w,
 int h,
 ColorModel model,
 int pixels[],
 int off,
 int scansize)

If the ColorModel object is the same one that has already been converted, then

simply passes the pixels through with the converted ColorModel, otherwise

converts the buffer of integer pixels to the default RGB ColorModel and passes the

converted buffer to the filterRGBPixels method to be converted one by one.

Converts a buffer of integer pixels to the default RGB ColorModel and passes the

converted buffer to the filterRGBPixels method.

Overrides:

setPixels in class ImageFilter

See Also:

getRGBdefault, filterRGBPixels

 filterRGB

 public abstract int filterRGB(int x,

55

 int y,
 int rgb)

Subclasses must specify a method to convert a single input pixel in the default

RGB ColorModel to a single output pixel.

See Also:

getRGBdefault, filterRGBPixels

All Packages Class Hierarchy This Package Previous Next Index

